«Закрученный свет» в новых дисплеях: учёные создали OLED-технологию на основе движения электронов по спирали
Материал уже тестируют для экранов нового поколения
Международная группа исследователей из Кембриджского университета и Технического университета Эйндховена преодолела многолетнее препятствие в разработке органических полупроводников, открыв путь к созданию более энергоэффективных OLED-дисплеев и перспективных технологий вроде спинтроники и квантовых вычислений.
Результаты работы описывают материал, заставляющий электроны двигаться по спирали, что позволяет генерировать циркулярно поляризованный свет — ключевое свойство для новых поколений электроники.
В отличие от симметричных неорганических полупроводников, таких как кремний, новый материал имитирует хиральные структуры, встречающиеся в природе. Хиральность — свойство молекул иметь «правую» или «левую» зеркальную конфигурацию — играет критическую роль в биологических процессах, например, в формировании ДНК. Однако до сих пор учёным не удавалось эффективно контролировать это явление в электронных устройствах.
Используя методы молекулярного проектирования, вдохновлённые природой, команда создала полупроводник на основе триазатруксена (TAT), чьи молекулы самоорганизуются в упорядоченные спиральные колонны. Это заставляет электроны двигаться по траектории, подобной резьбе, что придаёт свету циркулярную поляризацию — характеристику, связанную с «закрученностью» электронов.

«Когда мы начали работать с органическими полупроводниками, многие сомневались в их потенциале. Сейчас они доминируют в дисплейных технологиях, но наш подход открывает ещё больше возможностей», — отметил сэр Ричард Френд, соавтор исследования. По его словам, гибкость органических материалов позволяет создавать структуры, недоступные для жёстких неорганических аналогов: «Это как собрать что угодно из Lego с бесконечным набором деталей, а не только из прямоугольных блоков».
Ключевым достижением стала интеграция TAT в рабочие OLED-устройства с циркулярной поляризацией (CP-OLED). Модифицировав стандартные методы производства, учёные добились рекордных показателей эффективности, яркости и уровня поляризации.
Сам материал TAT при возбуждении синим или ультрафиолетовым светом излучает яркий зелёный свет с сильной круговой поляризацией. «До сих пор такой эффект было практически невозможно достичь в полупроводниках», — добавил Марко Прейс из Эйндховена, подчеркнув, что структура TAT не только направляет электроны, но и влияет на свойства излучаемого света.
Помимо дисплеев, где хиральные полупроводники могут снизить энергопотери на 30% – 50%, технология обещает прорыв в спинтронике — области, использующей спин электронов для хранения и обработки данных. Это может привести к созданию более быстрых и безопасных вычислительных систем. Кроме того, контроль над спином важен для квантовых вычислений.
Учёные впервые связали хиральность структуры с движением электронов на таком уровне. Это фундаментальный шаг вперёд.
Органические полупроводники уже формируют индустрию с оборотом свыше $60 млрд, и новая разработка расширяет их потенциал. По словам учёных, следующим этапом станет коммерциализация технологии — первые CP-OLED-дисплеи могут появиться на рынке в течение пяти лет, а в долгосрочной перспективе хиральные материалы могут переопределить архитектуру квантовых процессоров и систем шифрования.