Статьи Новости Блоги

Учёные сделали шаг вперед в понимании сверхпроводимости: терагерцовые импульсы открывают новые возможности для физики конденсированного состояния

Учёные надеются, что новый метод поможет им лучше понять сверхпроводимость и её применение в реальных устройствах

Группа исследователей из Института Макса Планка (MPSD) в Гамбурге и Брукхейвенской национальной лаборатории в США продемонстрировала новый способ изучения беспорядка в сверхпроводниках с использованием терагерцовых импульсов света.

Адаптировав методы, используемые в ядерном магнитном резонансе, к терагерцовой спектроскопии, команда впервые смогла проследить эволюцию беспорядка в транспортных свойствах вплоть до температуры сверхпроводящего перехода. Исследование опубликовано в Nature Physics.

Речь идёт о беспорядке в контексте физики конденсированного состояния, а именно о беспорядке в структуре и поведении сверхпроводников, который относится к наличию случайных или неупорядоченных флуктуаций в структуре или поведении системы, таких как неравномерное распределение атомов или молекул, дефекты или несовершенства в кристаллической структуре, случайные флуктуации температуры или давления, и неравномерное распределение электронов или других частиц в материале. Важность беспорядка в физике сопоставима только с трудностью его изучения. Например, свойства высокотемпературных сверхпроводников сильно зависят от изменений химического состава твёрдого тела.

Учёные сделали шаг вперед в понимании сверхпроводимости: терагерцовые импульсы открывают новые возможности для физики конденсированного состояния
В купратном сверхпроводнике La1,83Sr0,17CuO4 межслоевое туннелирование наследует пространственный беспорядок, который можно измерить с помощью изолированного «эхо Джозефсона» в двумерной терагерцовой спектроскопии с угловым разрешением. Источник: Jörg Harms, MPSD

Методы, позволяющие измерять беспорядок и его влияние на такие свойства, как сканирующая туннельная микроскопия, работают только при очень низких температурах и не учитывают эту физику вблизи температуры перехода.

Сверхпроводимость — квантовое явление, позволяющее электрическому току течь без сопротивления — является одним из важнейших явлений в физике конденсированного состояния благодаря своему преобразующему технологическому воздействию.

Многие материалы, которые становятся сверхпроводящими при так называемых «высоких температурах» (около -170°C), такие как купратные сверхпроводники, получают свои свойства от химического легирования, которое вносит беспорядок. Однако точное влияние этого химического изменения на их сверхпроводящие свойства остаётся нераскрытым. Купратные сверхпроводники — это тип сверхпроводников, которые содержат медь (Cu) и кислород (O) в своей структуре. Они являются перспективными материалами, которые имеют большие перспективы для использования в различных областях, но также требуют дальнейших исследований и разработок для решения существующих проблем и ограничений.

В сверхпроводниках и конденсированных системах в целом беспорядок обычно изучается с помощью экспериментов с точным пространственным разрешением, например, с использованием чрезвычайно острых металлических наконечников. Однако чувствительность этих экспериментов ограничивает их применение температурами жидкого гелия, намного ниже сверхпроводящего перехода, тем самым препятствуя изучению многих фундаментальных вопросов, связанных с самим переходом.

Черпая вдохновение из методов многомерной спектроскопии, изначально разработанных для ядерного магнитного резонанса, а затем адаптированных к видимым и ультрафиолетовым оптическим частотам химиками, изучающими молекулярные и биологические системы, исследователи MPSD расширили этот класс методов до терагерцового диапазона частот, где резонируют коллективные моды твёрдых тел.

Этот метод заключается в последовательном возбуждении материала несколькими интенсивными терагерцовыми импульсами, как правило, в коллинеарной геометрии, в которой импульсы распространяются в одном направлении.

Для исследования купратного сверхпроводника La 1,83 Sr 0,17 CuO 4 — непрозрачного материала, пропускающего минимальное количество света, — группа расширила обычную схему, впервые реализовав двумерную терагерцовую спектроскопию (2DTS) в неколлинеарной геометрии, что позволило исследователям изолировать определенные терагерцовые нелинейности по направлению их излучения.

Используя эту технологию 2DTS с угловым разрешением, исследователи наблюдали, что сверхпроводящий транспорт в купрате восстанавливался после возбуждения терагерцовыми импульсами, явление, которое они назвали «эхо Джозефсона».

Эти «эхо» показали, что беспорядок в сверхпроводящем транспорте был значительно ниже, чем соответствующий беспорядок, наблюдаемый в сверхпроводящей щели, измеренный с помощью пространственно-разрешённых методов, таких как эксперименты с использованием сканирующей микроскопии.

Более того, универсальность метода 2DTS с разрешением позволила команде впервые измерить беспорядок вблизи температуры сверхпроводящего перехода и обнаружить, что он остаётся стабильным вплоть до относительно высоких 70% от температуры перехода.

Помимо предоставления более глубокого понимания свойств купратных сверхпроводников, исследователи подчеркнули, что эти первые эксперименты открывают дверь для многих направлений. Помимо применения 2DTS с угловым разрешением к другим сверхпроводникам и квантовым материалам в более широком смысле, сверхбыстрая природа 2DTS делает его применимым к переходным состояниям материи, слишком кратковременным для обычных зондов беспорядка.

17 сентября 2024 Г.

22:13

Darth Sahara

| Источник: phys.org

Комментировать (1)