Найден Грааль термоядерного синтеза? Ученые исследуют новые материалы для сердца реактора
Термоядерный синтез — мечта энергетики, чистый и практически неисчерпаемый источник энергии. Но на пути к этой мечте стоит множество технологических преград. Одна из самых сложных — поиск материалов, способных выдержать адские условия внутри реактора. Представьте себе сердце звезды, заключенное в рукотворную оболочку. Это и есть термоядерный реактор, где плазма, раскаленная до миллионов градусов, испускает потоки нейтронов, электронов и излучения. Именно на границе с этой плазмой и должны работать материалы, от стойкости которых зависит успех всего предприятия.
Ключевой элемент конструкции — дивертор, своеобразный «пылесос» реактора. Он отводит тепло и продукты реакции, защищая стенки от разрушения. В строящемся реакторе ИТЭР дивертор изготовлен из вольфрама, известного своей исключительной жаропрочностью. Но вольфрам — не единственный кандидат, и ученые продолжают поиски более подходящих материалов для реакторов будущего.
Исследователи из лаборатории MARVEL (EPFL) под руководством Николы Марцари разработали новый подход к этой проблеме. Они предложили метод компьютерного скрининга, позволяющий оценить пригодность различных материалов для работы в экстремальных условиях дивертора.
Первая задача — сделать вычисления осуществимыми. Моделирование взаимодействия плазмы и материала на атомном уровне — задача колоссальной сложности. Поэтому ученые сосредоточились на ключевых свойствах, определяющих стойкость материала: теплоемкость, теплопроводность, температура плавления, плотность и максимальная допустимая толщина слоя. Анализируя базу данных кристаллических структур (файлы Полинга), они отобрали материалы, теоретически способные выдержать температурный режим реактора.
Получился первичный список из 71 кандидата. Дальше началась кропотливая работа с научной литературой. Каждый материал проверялся на предмет ранее проведенных испытаний, известных недостатков и склонности к эрозии или деградации под воздействием плазмы и нейтронов. Этот этап отсеял даже некоторые перспективные материалы, например, высокоэнтропийные сплавы.
В финале остался 21 материал. Для них были рассчитаны два критических параметра: энергия связи поверхности (показатель устойчивости к эрозии) и энергия образования междоузлий водорода (показатель взаимодействия с тритием). Эрозия — серьезная проблема, так как высвобождающиеся атомы загрязняют плазму, снижая ее температуру. Взаимодействие с тритием также нежелательно: оно снижает эффективность реакции и может привести к опасному накоплению этого изотопа.
Итоговый рейтинг включает как привычные материалы (вольфрам, графит, нитрид бора), так и неожиданных претендентов, например, определенную фазу нитрида тантала, ранее не рассматривавшуюся в качестве материала для дивертора.
Работа ученых из MARVEL — важный шаг в поиске оптимальных материалов для термоядерных реакторов. В будущем исследователи планируют усовершенствовать свою модель, учитывая влияние нейтронного облучения с помощью нейронных сетей. Это позволит еще точнее предсказать поведение материалов в экстремальных условиях термоядерного синтеза и, возможно, приблизит нас к реализации мечты о чистой и безопасной энергии.
0 комментариев
Добавить комментарий
Добавить комментарий