Машинное обучение помогает раскрыть весь потенциал углерода в суперконденсаторах

Пост опубликован в блогах iXBT.com, его автор не имеет отношения к редакции iXBT.com
| Рассуждения | Оффтопик

Суперконденсаторы (они же ионисторы) — это устройства, сочетающие в себе положительные черты как конденсаторов (большая скорость заряда/разряда), так и аккумуляторов (большая ёмкость). Они используются в различных областях, таких как транспорт, электроника и возобновляемая энергетика. Однако существующие ионисторы всё же имеют относительно небольшую емкость и, для расширения спектра применения, требуют улучшения материалов, из которых они сделаны.

Один из таких материалов — углерод. Дешевый, химически стабильный материал с высокой проводимостью. Углерод имеет пористую структуру, которая обеспечивает большую поверхность для хранения заряда на границе между углеродом и электролитом — жидкостью, которая переносит ионы между электродами суперконденсатора. Однако не все поры углерода одинаково эффективны для этой цели. Нужен оптимальный баланс между большими и маленькими порами, а также специальные химические группы на поверхности углерода, которые могут участвовать в окислительно-восстановительных реакциях, увеличивая псевдоемкость — еще один вид хранения заряда.

Найти такой оптимальный углеродный материал — непростая задача, которая требует множества экспериментов и анализов. Но современные технологии машинного обучения могут помочь ускорить этот процесс и открыть новые возможности для разработки суперконденсаторов.

Машинное обучение — это раздел искусственного интеллекта, который позволяет компьютерам обучаться на данных и давать предсказания или принимать решения. Машинное обучение может применяться в разных областях, в том числе в проектировании материалов. Например, можно построить модель, которая будет предсказывать свойства материалов на основе их состава и структуры, или которая будет определять оптимальные параметры для синтеза материалов.

Именно такой подход использовали химики из Лаборатории Окриджа по энергетике Министерства энергетики США в сотрудничестве с учеными из Калифорнийского университета в Риверсайде, Национальной лаборатории Аймс и Университета Теннесси в Ноксвилле. Они построили искусственную нейронную сеть — тип модели машинного обучения, который имитирует работу мозга — и обучили ее на данных о емкости углеродных материалов, легированных кислородом и азотом. Затем они установили цель для этой модели — создать «материал мечты» для источника питания.

Концептуальный арт изображает машинное обучение, находящее идеальный материал для емкостного хранения энергии. Его углеродный каркас (черный) имеет функциональные группы с кислородом (розовый) и азотом (бирюзовый)
Автор: Tao Wang/ORNL, U.S. Dept. of Energy Источник: phys.org

Модель предсказала, что наибольшая емкость для углеродного электрода составит 570 фарад на грамм, если углерод будет легирован кислородом и азотом. Это значение было в четыре раза выше, чем у типичного коммерческого материала. Кроме того, модель указала на оптимальный баланс между мезопорами — порами размером от 2 до 50 нанометров, и микропорами — порами меньше 2 нанометров. Мезопоры обеспечивают быструю транспортировку электролита, а микропоры — большую поверхность для хранения заряда.

Используя эти предсказания, химики спроектировали и синтезировали новый углеродный материал, который имел рекордную емкость 611 фарад на грамм. Они также провели ряд экспериментов и анализов, чтобы подтвердить и объяснить свойства материала. Они обнаружили, что мезопоры, лешированные кислородом и азотом, вносят наибольший вклад в общую емкость, а псевдоемкость от окислительно-восстановительных реакций на поверхности углерода составляет 25% от общей емкости. Они также измерили скорость диффузии электролита в порах разного размера и показали, что она зависит от диаметра пор.

Это исследование является примером успешного применения машинного обучения в проектировании материалов. Благодаря этому подходу, химики смогли достичь за три месяца того, что раньше занимало бы не менее года. Они также открыли новые горизонты для развития ионисторов, которые могут хранить больше энергии и заряжаться быстрее.

1 комментарий

D@rkM@n
Углерод известен как: графит, алмаз, графен… Как называется этот вид?
Сказки венского леса.

Добавить комментарий

Сейчас на главной

Новости

Публикации

Умные мурлыки: 5 пород кошек с высоким IQ, которые легко обучаются

В мире кошек существуют особые породы, которые не только привлекают своей миловидной внешностью, но и впечатляют своим высоким уровнем интеллекта. Эти умные питомцы не только быстро учатся, но и...

Почему Steam Deck — консоль предельных параметров без будущего (но её все равно стоит купить)

Когда в июле 2021 года Valve анонсировала Steam Deck, игровое сообщество было потрясено. И действительно, идея полноценного десктопного гейминга на портативной консоли казалась революционной.Однако...

Вакуумный упаковщик: преимущества и недостатки устройства

Вакуумный упаковщик стал полезным гаджетом на кухне, особенно если нужно сохранить подольше свежесть продуктов. Вакууматор выкачивает воздух, позволяя не контактировать продукт с кислородом,...

P2P-сети, доверие и безопасность. Почему в Биткоин-сетях все по-честному

Хранится ли Биткоин у кого-то на компьютере? Уже выяснили, что нет. Есть ли какое-то физическое воплощение — часто рисуют золотые монетки с чеканкой? Тоже нет. А что все-таки...

Защита картера: действительно ли она необходима для вашего автомобиля?

Угадайте, какой аксессуар чаще всего предлагают при покупке нового авто? Конечно, это защита картера! Наши дороги делают этот элемент почти незаменимым — малейшее отвлечение, и ваш...

Как можно создать секретный чат на любом Айфоне без мессенджеров и социальных сетей

В эпоху цифровых технологий, когда конфиденциальность становится все более ценной, пользователи iPhone имеют неожиданный способ вести тайную переписку. Стандартное приложение «Заметки», обычно...