Сравнительное тестирование термоинтерфейсов Thermal Grizzly: термопасты Aeronaut, Hydronaut и Kryonaut, а также жидкометаллический Conductonaut

Термопасты Aeronaut, Hydronaut и Kryonaut, а также жидкометаллический Conductonaut
Термоинтерфейсы являются самым слабым звеном в передаче тепла от компонента к радиатору. Наша цель — устранить это слабое место. В течение нескольких лет у нас была идея сделать это с помощью высокоэффективных термоинтерфейсов.
Айке Салов, компьютерный специалист и основатель компании Thermal Grizzly

В нашем сравнительном тестировании приняли участие четыре термоинтерфейса Thermal Grizzly: термопасты Aeronaut, Hydronaut и Kryonaut, а также термоинтерфейс Conductonaut — жидкометаллический термокомпаунд на основе эвтектического сплава. Их эффективность сравнивалась между собой; кроме того, выборка участников тестирования была расширена за счет нескольких популярных термопаст, представленных на российском рынке.

Содержание:

Паспортные характеристики

ПроизводительThermal Grizzly
НазваниеAeronautHydronautKryonautConductonaut
Коэффициент теплопроводности, Вт/(м·К)8,511,812,573
Вязкость, Па·с110—160140—190130—1700,0021
Плотность, г/см³2,62,63,76,24
Рабочая температура, °С, мин./макс.−150/+200−200/+350−200/+350+10/+140
Описание на сайте производителяAeronautHydronautKryonautConductonaut

Описание

Для термопаст Aeronaut, Hydronaut и Kryonaut указано значение удельной электропроводности 0 пСм/м (согласно DIN 51412-1) — если по-простому, эти термоинтерфейсы электрический ток не проводят, то есть являются изоляторами. Напротив, Conductonaut представляет собой сплав металлов, поэтому должен характеризоваться высоким значением удельной электропроводности, то есть хорошо проводить электрический ток. На сайте производителя для термопаст Aeronaut и Hydronaut указаны варианты фасовки 1,5 мл/3,9 г или 3 мл/7,8 г, для Kryonaut 1,5 мл/5,55 г или 3 мл/11,1 г, а для Conductonaut — 1 г. Однако на всех пакетиках, доставшихся нам на тестирование, количество содержимого было указано как 1 г. Термоинтерфейсы упакованы в небольшие пакетики, изготовленные из плотного пластика с фольгированной прослойкой. Пакетики черные и непрозрачные. В верхней части пакетиков есть просечка для развешивания на витрине/стеллаже. Ниже боковыми насечками обозначено место отрыва, при этом аккуратное вскрытие пакета по этим насечкам не повреждает многоразовую застежку-клипсу. Собственно сами пакетики все одинаковые. На фронтальной и задней поверхностях ярко-оранжевым по черному нанесены логотип, адрес в Сети и слоган производителя. На фронтальной поверхности небольшая круглая бумажная наклейка указывает, что именно содержится в пакетике.

Сравнительное тестирование термоинтерфейсов Thermal Grizzly

На задней поверхности пакетика наклейка побольше подробнее описывает продукт.

Сайт компании Thermal Grizzly представлен в том числе и версией на русском языке. На страницах этого сайта подробно описаны все участники данного тестирования, а в разделе поддержки можно найти ссылки на PDF-файлы с описанием и руководствами.

Aeronaut

Сравнительное тестирование термоинтерфейсов Thermal Grizzly

Вот, что производитель пишет про эту термопасту:

Термопаста Aeronaut — идеальный, высокоэффективный продукт для неискушённых пользователей. Отличная защита охлаждаемой поверхности и хорошая теплопроводность делают Aeronaut идеальным выбором для пользователей, которые хотят оптимизировать свою систему охлаждения или ищут более эффективную альтернативу термопасте, идущей в комплекте с их оборудованием.
  • Очень хорошая теплопроводность
  • Длительный срок службы
  • Не высыхает
  • Не электропроводная
Количество металлических элементов в формуле Aeronaut ниже в сравнении с другими нашими продуктами, тем не менее, она обеспечивает очень хорошую теплопроводность. В наших лабораторных тестах Aeronaut показал высокую степень износостойкости при высоких температурах, и также вёл себя как защитник поверхности. При удалении термопасты Aeronaut на поверхности компонентов появляется гораздо меньшее количество микроцарапин по сравнению с другими термопастами.

В пакетике находится небольшой шприц с многоразовой пластиковой крышечкой. Шприц и крышка затянуты в пластик, что исключает случайное выдавливание термопасты. Кроме того, в комплект входят инструкция (на русском и английском языках) и пластиковый шпатель (лопаточка). Комплект одинаковый для всех трех термопаст, поэтому далее не описывается.

Сравнительное тестирование термоинтерфейсов Thermal Grizzly

Hydronaut

Сравнительное тестирование термоинтерфейсов Thermal Grizzly

Описание производителя:

Благодаря своей превосходной теплопроводности Hydronaut может быть использован для оверклокинга, но создан он был специально для систем охлаждения с большой площадью теплосъёмной поверхности — например, систем водяного охлаждения. Кроме того, Hydronaut отличает превосходное соотношение цены и производительности.
  • Подходит для оверклокинга
  • Превосходная теплопроводность
  • Не высыхает
  • Без силикона
  • Не электропроводная
Термопаста Hydronaut обеспечивает оптимальные возможности теплообмена для более масштабных систем охлаждения — например, систем водяного охлаждения. Термопаста Hydronaut имеет бессиликоновый состав. Это делает её очень лёгкой, пластичной и легконаносимой. Hydronaut достигает наилучших результатов при использовании на средне- и более масштабных системах охлаждения. Этот продукт является ROHS-совместимым — для требовательных пользователей.

Kryonaut

Сравнительное тестирование термоинтерфейсов Thermal Grizzly

Описание производителя:

Термопаста Kryonaut разработана специально для самых требовательных систем и готова оправдать даже самые высокие ожидания оверклокерского сообщества. Kryonaut также настоятельно рекомендуется как топовый продукт для критически важных систем охлаждения в промышленности.
  • Разработано для оверклокинга
  • Превосходная теплопроводность
  • Не высыхает
  • Высокая стабильность
  • Не электропроводная
«Kryo» — по-гречески означает «холод» — входит в состав слова «криоинженерия». Очевидно, что эта термопаста создана специально для применения в условиях низких температур — для истинных «Крионавтов» среди экстремальных оверклокеров. Kryonaut использует специальную структуру, которая останавливает процесс высыхания при температуре до 80° Цельсия. Эта структура также отвечает за то, чтобы частицы наноалюминия и оксида цинка, входящие в состав пасты, оптимально смешивались, чтобы компенсировать неровности компонента (т.е. процессора) и радиатора, что гарантирует эффективную передачу тепла.

Conductonaut

Сравнительное тестирование термоинтерфейсов Thermal Grizzly

Описание производителя:

Наш термоинтерфейс Conductonaut создан на основе жидкометаллических сплавов и предназначен для случаев, когда требуется наивысшая эффективность. Conductonaut рекомендован опытным пользователям, которые ищут максимально эффективный продукт с самой лучшей теплопроводностью при работе в температурном диапазоне выше 8 °C.
  • Сверхвысокая теплопроводность
  • Повышенное содержание индия
  • Удобное нанесение с помощью синтетической иглы
Thermal Grizzly Conductonaut — жидкометаллический термокомпаунд на основе эвтектического сплава. Наша специальная смесь из таких металлов как олово, галлий и индий, Conductonaut отличается высочайшей теплопроводностью и превосходной стабильностью.

В пакетике с надписью Conductonaut находится небольшой шприц с многоразовой пластиковой крышечкой, аппликатор с тонким носиком, две ватные палочки, две салфетки, пропитанные спиртом, инструкция (на русском и английском языках) и грозная предупредительная листовка с надписью о том, что Conductonaut нельзя использовать с алюминиевыми радиаторами.

Сравнительное тестирование термоинтерфейсов Thermal Grizzly

Дело в том, что галлий, входящий в состав Conductonaut, способствует быстрому разрушению и окислению алюминия. Поэтому, по крайней мере, подошва радиатора, контактирующая с крышкой процессора, и на которою наносится Conductonaut, ни в коем случае не должна быть из алюминия или его сплавов. То есть для применения Conductonaut нужно выбирать кулеры с медной подошвой-теплосъемником.

Тестирование

Чтобы не ограничиваться сравнением только продукции Thermal Grizzly самой с собой, мы расширили выборку для тестирования рядом термопаст, заявленные характеристики которых представлены в таблице ниже.

НазваниеКПТ-8АлСил-3Arctic MX-4Cooler Master IC Essential E1Cooler Master MasterGel Maker
Коэффициент теплопроводности, Вт/(м·К)0,7-0,81,8-2,08,5>4,5>11
Вязкость, Па·с90—150???87??????
Плотность, г/см³2,6—3,0???2,52,52,6
Рабочая температура, °С, мин./макс.−60/+200−30/????????????
Описание на сайте производителя??????Arctic MX-4IC Essential E1MasterGel Maker

Для тестирования термоинтерфейсов мы использовали стенд, в состав которого входили процессор Intel Core i7-6900K, установленный на материнской плате ASRock X99 Taichi, а также активный кулер с ровной медной подошвой, шестью тепловыми трубками и алюминиевыми ребрами охлаждения. Для имитации работы в сложных условиях вентилятор кулера работал на пониженных оборотах, что достигалось снижением напряжения питания до 5 В. Для лучшего выравнивания температуры мы в дополнение к вентиляторам кондиционера, по возможности поддерживающего температуру в 24 °C, применяли бытовой вентилятор, работающий на минимальной скорости и направленный с расстояния в примерно 1,3 м на стенд. Чтобы учесть неизбежные колебания температуры окружающего стенд воздуха, мы для каждого измерения из температуры процессора вычитали реальную температуру воздуха. Скорость вращения вентилятора на кулере по невыясненным причинам варьировалась в пределах от 600 до 650 об/мин. Чтобы нивелировать связанное с этим изменение теплового сопротивления, вводилась поправка, рассчитанная на основании экспериментальных данных зависимости теплового сопротивления от скорости вращения вентилятора кулера. Указанная поправка достигала значения в 1 °С по абсолютной величине. После нанесения термоинтерфейса и установки кулера стенд прогревался с максимальной загрузкой процессора тестом Stress FPU из программы AIDA64 в течении 30 минут. Затем за 30 секунд работы все в том же режиме определялись средние значения температуры 8 ядер процессора, температуры в помещении и скорости вращения вентилятора на кулере. В качестве температуры процессора бралось среднее от средних значений по ядрам. Заявленное значение TDP для указанного процессора составляет 140 Вт, в случае используемой нагрузки потребление составило 131 Вт по 12 В на разъем CPU на матплате. Зависимость потребления по этому и разъему ATX от нагрузки и ее характера дает повод предположить, что нагруженный CPU в подавляющей степени питается именно от разъема CPU/12 В на матплате.

Особо стоит обсудить способ нанесения термоинтерфейса. Для паст Thermal Grizzly производитель предлагает три способа, описанные в руководстве:

Сравнительное тестирование термоинтерфейсов Thermal Grizzly
  1. Равномерное распределение по крышке процессора.
  2. Капля в центре.
  3. Нанесение в форме буквы Х.

В случае двух последних способов предполагается, что «давление радиатора равномерно распределит термопасту по поверхности теплорассеивателя». Предварительное тестирование показало, что первый способ продемонстрировал худшие результаты по снижению температуры процессора и воспроизводимости, также он наиболее трудоемкий из всех трех. Решено было остановится на втором способе, тем более, что по нашей оценке крепление используемого кулера обеспечивало очень сильный и равномерный прижим подошвы к крышке процессора.

Сравнительное тестирование термоинтерфейсов Thermal Grizzly

Количества термопасты в имевшейся фасовке Thermal Grizzly при таком способе нанесения хватает на два раза; чуть уменьшив расход, можно растянуть на три раза, но вряд ли на больше. Характер распределения термопасты на подошве снятого после тестирования кулера и на крышке процессора свидетельствовал, что термоинтерфейс действительно распределялся равномерно и тонким слоем. При отрыве подошвы от крышки процессора слой все же разрушался, и, в зависимости от вязкости термопасты, образовывались структуры с валиками (низкая вязкость) или разрывами (высокая вязкость).

Сравнительное тестирование термоинтерфейсов Thermal Grizzly

Отметим, что уже после проведения тестов во время обсуждения результатов с представителями компании Thermal Grizzly мы выяснили, что Thermal Grizzly настоятельно рекомендует первый способ — равномерное распределение по крышке процессора, — так как считается, что он дает лучшие результаты. Соответственно, в руководствах, размещенных на сайте Thermal Grizzly на момент написания статьи, указывается только этот способ с применением специального аппликатора или лопаточки (пластиковой карточки).

В случае жидкометаллического Conductonaut нанесение выполнялось по инструкции производителя. Отметим, что несмотря на тщательную очистку поверхностей подошвы кулера и крышки процессора, сплав Conductonaut первоначально их плохо смачивал, оставался шарообразной капелькой, и только несколько десятков секунд активного размазывания ватной палочкой могло заставить Conductonaut распределиться тонким слоем по этим плоскостям. После контакта с Conductonaut медная подошва кулера взамен красно-медного приобрела бесцветно-металлический цвет. Восстановить медный цвет удалось только механическим удалением слоя в доли миллиметра с помощью наждачной бумаги. Похожие изменения претерпела и поверхность крышки процессора, но, похоже, проникновение сплава Conductonaut в данном случае было не столь глубоким. Предупредим, что выдавливать Conductonaut нужно очень осторожно, так как поршень чуть заедает, а сплав очень жидкий. С нашей точки зрения, производителю следовало бы подумать об оснащении шприца с Conductonaut винтовым движком для поршня. В любом случае, наносить Conductonaut лучше на подошву кулера и на изъятый из гнезда процессор в окружении, которому не повредит жидкий, проводящий и хорошо растворяющий металлы похожий на ртуть Conductonaut.

Для более наглядного представления результатов в качестве точки отсчета мы выбрали температуру процессора (вернее, скорректированную разницу между температурой процессора, доходившей до почти 90 °С, и средней температурой воздуха в помещении), полученную при использовании КПТ-8. На представленной диаграмме показано, насколько температура процессора (в условиях нашего теста, конечно) ниже при применении других, отличных от КПТ-8 термоинтерфейсов.

Снижение температуры процессора в зависимости от примененных термоинтерфейсов

Эффективность

Отметим, что, согласно нашей оценке, из-за погрешностей проведенного эксперимента разницу в менее чем 1 °С можно не учитывать. В результате очень условно испытанные термоинтерфейсы можно разделить на пять групп, в порядке увеличения эффективности:

  1. КПТ-8
  2. АлСил-3
  3. Thermal Grizzly Hydronaut, Cooler Master IC Essential E1, Arctic MX-4 и Thermal Grizzly Aeronaut
  4. Thermal Grizzly Kryonaut и Cooler Master MasterGel Maker
  5. Thermal Grizzly Conductonaut

Выводы

Безоговорочным победителем стал жидкометаллический термокомпаунд Thermal Grizzly Conductonaut. Однако использовать его можно только с медными теплосъемниками, при нанесении придется соблюдать особую аккуратность и осторожность, а внешний вид подошвы кулера и крышки процессора претерпит изменения после взаимодействия с этим жидким металлом. И все же отрыв почти в пять градусов от ближайшего конкурента впечатляет. Термопаста Thermal Grizzly Kryonaut демонстрирует отличные в своем классе результаты, следом идут термопасты Aeronaut и Hydronaut. К достоинствам протестированной продукции Thermal Grizzly стоит отнести хорошую комплектацию, удобные многоразовые пакеты и отличную локализацию для русскоязычного потребителя.

В заключение предлагаем посмотреть наш видеообзор сравнения термоинтерфейсов Thermal Grizzly:

Наш видеообзор сравнения термоинтерфейсов Thermal Grizzly можно также посмотреть на iXBT.Video

Термоинтерфейсы Thermal Grizzly предоставлены на тестирование производителем



13 января 2017 Г.

Thermal Grizzly: Aeronaut, Hydronaut Kryonaut, Conductonaut

Thermal Grizzly

Aeronaut, Hydronaut Kryonaut, Conductonaut

. — . .
, Thermal Grizzly

Thermal Grizzly: Aeronaut, Hydronaut Kryonaut, Conductonaut — . ; , , .

:

Thermal Grizzly
AeronautHydronautKryonautConductonaut
, /(·)8,511,812,573
, ·110—160140—190130—1700,0021
, /³2,62,63,76,24
, °, ./.−150/+200−200/+350−200/+350+10/+140
Aeronaut Hydronaut Kryonaut Conductonaut

Aeronaut, Hydronaut Kryonaut 0 / ( DIN 51412-1) — -, , . , Conductonaut , , . Aeronaut Hydronaut 1,5 /3,9  3 /7,8 , Kryonaut 1,5 /5,55  3 /11,1 , Conductonaut — 1 . , , 1 . , . . /. , -. . - , . , .

   Thermal Grizzly

.

Thermal Grizzly . , PDF- .

Aeronaut

   Thermal Grizzly

, :

Aeronaut — , . Aeronaut , , .
Aeronaut , , . Aeronaut , . Aeronaut .

. , . , ( ) (). , .

   Thermal Grizzly

Hydronaut

   Thermal Grizzly

:

Hydronaut , — , . , Hydronaut .
Hydronaut — , . Hydronaut . , . Hydronaut - . ROHS- — .

Kryonaut

   Thermal Grizzly

:

Kryonaut . Kryonaut .
«Kryo» — - «» — «». , — «» . Kryonaut , 80° . , , , , (.. ) , .

Conductonaut

   Thermal Grizzly

:

Conductonaut , . Conductonaut , 8 °C.
Thermal Grizzly Conductonaut — . , , Conductonaut .

Conductonaut , , , , , ( ) , Conductonaut .

   Thermal Grizzly

, , Conductonaut, . , , , , Conductonaut, . Conductonaut -.

Thermal Grizzly , , .

-8-3Arctic MX-4Cooler Master IC Essential E1Cooler Master MasterGel Maker
, /(·)0,7-0,81,8-2,08,5>4,5>11
, ·90—150???87??????
, /³2,6—3,0???2,52,52,6
, °, ./.−60/+200−30/????????????
??? ??? Arctic MX-4 IC Essential E1 MasterGel Maker

, Intel Core i7-6900K, ASRock X99 Taichi, , . , 5 . , 24 °C, , 1,3  . , . 600 650 /. , , . 1 ° . Stress FPU AIDA64 30 . 30 8 , . . TDP 140 , 131  12  CPU . ATX , CPU CPU/12  .

. Thermal Grizzly , :

   Thermal Grizzly
  1. .
  2. .
  3. .

, « ». , , . , , .

   Thermal Grizzly

Thermal Grizzly ; , , . , . , , , ( ) ( ).

   Thermal Grizzly

, Thermal Grizzly , Thermal Grizzly — , — , . , , Thermal Grizzly , ( ).

Conductonaut . , , Conductonaut , , Conductonaut . Conductonaut - - . . , , , Conductonaut . , Conductonaut , , . , Conductonaut . , Conductonaut , , Conductonaut.

(, , 90 °, ), -8. , ( , ) , -8 .

, , , - 1 ° . , :

  1. -8
  2. -3
  3. Thermal Grizzly Hydronaut, Cooler Master IC Essential E1, Arctic MX-4 Thermal Grizzly Aeronaut
  4. Thermal Grizzly Kryonaut Cooler Master MasterGel Maker
  5. Thermal Grizzly Conductonaut

Thermal Grizzly Conductonaut. , , . . Thermal Grizzly Kryonaut , Aeronaut Hydronaut. Thermal Grizzly , .


Thermal Grizzly:

Thermal Grizzly iXBT.Video

Thermal Grizzly